def build_generator(): model = tf.keras.Sequential() # Encoder model.add(layers.Conv2D(64, (3, 3), activation='relu', padding='same', input_shape=(64, 64, 1))) model.add(layers.Conv2D(128, (3, 3), activation='relu', strides=2, padding='same')) model.add(layers.Conv2D(256, (3, 3), activation='relu', strides=2, padding='same')) # Decoder model.add(layers.Conv2DTranspose(128, (3, 3), activation='relu', strides=2, padding='same')) model.add(layers.Conv2DTranspose(64, (3, 3), activation='relu', strides=2, padding='same')) model.add(layers.Conv2D(2, (3, 3), activation='tanh', padding='same')) # Change from 3 to 2 return model